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Granular systems on a vibrating wall: The kinetic boundary condition
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Dense granular media, fluidized by a vibrating wall, is studied in the high-vibrating frequency limit, where
the plate vibration frequency is much greater than the collision frequency, and the plate acceleration is much
greater than gravity. Using kinetic theory, it is shown that, regardless of the fluid density, external field, or
restitution coefficient between particles, there is an asymptotic scaling for saying #atisf kept constant,
then different amplitude#\ (with the corresponding frequencies) produce the same macroscopic result.
Furthermore, it is found that in the limit of high frequencies, the boundary condition associated with the
vibrating wall can be replaced by a stationary heat source. The value of the heat flux depends linearly with
density even for dense fluids. Numerical comparisons with molecular dynamics simulations confirm these
predictions and show that the substitution of the vibrating wall by a thermal one gives poor results, while the
substitution by a heat source is very accurate.
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[. INTRODUCTION with a previous article, where we have considered the case of
i . _ moderately high frequencies, when a global hydrodynamic
Granular matter is usually kept fluidized by means of Vi-description can be appliefd]. In that case, the expression

brating walls. Commonly hydrodynamic or kinetic theory ¢, iha energy influx was different, as well as was the way
approaches are used to describe the bulk of the granular fluigle imit of high frequencies must be taken.

(see, for example, Refl]). However, a detailed consider-
ation of the boundary condition is difficult because of its
explicit time dependence. In the case of high frequency and
small amplitude vibrations, successive collisions of the
grains with the wall are uncorrelated. For this reason, in this Let us consider a granular system fluidized by a wall that
limiting case, the wall has been usually modeled as a stosscillates vertically with a frequency and maximum am-
chastic border. It has been argued that the wall can be replitude A. We consider the general case of any wave form as
placed by a thermal wall at a fixed granular temperature, thatepresented in Fig. 1. The grains that collide with it, are
scales a3~ M(Aw)?, wherem is the particle mass, andl  reflected elastically, emerging with a normal velocity
and o are the oscillation amplitude and frequency, respec=2V,,—c, wherec is the precollisional normal velocity and
tively [2]. Also, kinetic approaches have been used to charV,, is the instantaneous velocity of the wall. The tangential
acterize the vibrating boundary condition in more defdj|  velocity is preserved in the collision. The results presented in
and instead of using a thermal wall, it has been shown thahis article are valid for all dimensions, but the relevant dy-
for some types of vibrating wallgsawtooth or triangular namics only take place in the direction perpendicular to the
waveforn) in the dilute case, it imposes a permanent energyvall.

influx [5-9]. In the limit of high oscillation frequenciegigher than

In this article, we consider the high frequency case, whergéhe mean collision frequency between grajngo hydrody-
kinetic equations must be used to describe the layer near the
wall. It is shown that, for any waveform of the oscillating
wall, in the limiting casew — <, A— 0, such thafAw is kept
constant, the wall can be effectively replaced by a static wall
that imposes a permanent energy influx. The value of the
energy influx is linearly proportional to density even for non-
ideal situations. It also depends on the waveform of the wall,
but it is independent of any external field or if the kinetic
equation needed to describe the granular dynamics is the
Boltzmann, Enskog, or even Liouville equations.

We give an expression for the energy influx for a general
wave form. In the case of the sawtooth wave form, we re- I
cover the expression given in Ref§] and[6], and for the . o )
sinusoidal and biparabolic wave forms, we give numerical_ FIG. 1. The generic wave form of the oscillating wall with pe-

values for the energy influx. This result must be contrasted©d 7=27/« and maximum amplitud@. There is an interaction
region (bounded by the two dashed lines free particle that col-

lides with the wall enters into the interaction region at a phase
with velocity ¢;, and, after a number of collisions, the particle
*Electronic address: rsoto@dfi.uchile.cl emerges with a velocitg:.

II. KINETIC THEORY DESCRIPTION
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namic theory can be used close to the wall. Indeed, there is a Therefore, the distribution function near the wall can be
Knudsen layer where only a kinetic approach can be usedietermined by means of the study of a free particle in the
We will assume that a Boltzmann-Enskog equation can b@resence of an oscillating wall. As the external field vanishes
used to describe the motion of the system close to the walin the limiting case, the motion of the free particle is as
We write the equation for the distribution functié¢,¢,t) in ~ follows: the particle enters into the interaction region with a

the compact form velocity ¢,,<0, and after a number of collisions with the
wall, it emerges with a velocity, >0, and never again

of . of . of _ collides with the wall(see Fig. 1
ERRAr A a_g_J(f’f)' @) The outgoing velocityc,, is determined in terms of the

incoming velocityc;,, and the phase at which the particle
whereg is the external force per unit madgpically gravity)  entered into the interaction regiog;,=R(ci,, ¢). The func-
andJ is the collision term. A detailed boundary condition tion R has been determined analytically in the case of saw-
must be supplied to describe the interaction with the osciltooth and triangular wave formg2], but the general case
lating wall. needs the use of numerical calculations. We recall tat

The system motion is described by two time and lengthdoes not depend on gravity or the nature of collisions.

scales. There is the fast and small scale, where the motion is At the macroscopic scale, the fast oscillations are de-
determined by the wall oscillation, and there is a long andscribed in an stochastic way, where the phase uniformly
slow scale, that describes the macroscopic motion. Waelistributed over the intervd0, 27r). Then, given an incom-
change variables to describe the fast scale in full detail:  ing velocity, there is a distribution of outgoing velocities

27

1
P(Couts Cin) = ZTJ d¢ 8(Cout— R(Cins ). (5

0

t'=wt, Z=A"1z, ¢ =(Aw) . (2)

Rewriting the Enskog-Boltzmann equation in these new

variables, we obtain This probability distribution depends only on the typical
velocity of the oscillating wall. That is, it only depends on

d . d . Jd
Zi4+é =+ (Aw) o g — = (Aw)w (f,f), (3) the productAw. Then,
ot or Jc

. P(c c-):waokﬁ;S[CL‘“—R(i ¢>>] ©6)
where we have suppressed the primes. w2 AW J o Aw Aw’ '
Equation(3) can be highly simplified at high frequencies.
If g/Aw2< 1, the term proportional to the gravity accelera- If the particles that arrive to the wall have a known ve-
tion becomes negligible. Analogously, the right-hand side idocity distribution f;,, the outgoing velocity distributioffiy,
proportional to the mean collision frequeneythen if v/ w is given by
<1, this term can also be neglected. Therefore, in the high-

0
frequency limit, provided the two previous conditions are fout(cout):f dc £ P(Cou ©)fin(C). (7)
fulfilled, we can take the first order im™ of the above —o Cout

equation

To keep a finite distribution functio¢such that the differ-
P g ent averages are finjtethe limit of high frequency must be
—f+c-—f=0. (4)  taken such thaAw remains finite. Note that this is in contrast
M or with the case where hydrodynamic equations can be used up

The last equation represents the motion of a free gas, witp the wall, where it is required thaw®* remains finite
no collisions and without an external force. That is, in the[10l-
time and length scale of the wall oscillations, grains do not
collide and they do not feel the external force. This result has
been obtained independently of the density of the fluid as 1. HEAT FLUX
long as the vibration frequency is much larger than the col- 1 anergyheay flux that is injected into the system can
lision frequency. A pathological situation can be obtained 'fbe computed as
the system is close to packing near the boundary, because In .
this case, the collision frequency diverges, making it impos- m m [~
sible to take the limit. However, if this were the case, a Q:Ef_w de éfm(c)+5fo de Soul©). (8)
kinetic theory description also becomes meaningless. Note,
however, that in order to arrive to E@), it is not necessary This expression needs the knowledge of the incoming dis-
to assume the Boltzmann-Enskog equation. In fact, théribution functionf,. This is a complex problem that needs
Bogoliubov-Born-Green-Kinkwood-YvonBBGKY) equa- to solve the Boltzmann-Enskog equation in the Knudsen
tion (derived without approximations from Liouville’s equa- layer, with an asymptotic boundary condition far from the
tion) for the one-particle distribution has a right-hand sidewall given by the hydrodynamic fieldesee, for example,
that is also proportional to the collision frequeneysee, for  Ref. [4]). For simplicity, and to obtain quantitative predic-
example, Ref[4]). Therefore, ifv/w<<1, Liouville’s equa- tions, we will assume that the incoming distribution is Max-
tion also leads to Eq4) by the same limiting process. wellian with local values of the density and temperature.
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FIG. 2. The motion of the wall in the sawtooth case. The am- I , | |
plitude isA, and the period ig=2#7/w. The constant upward ve- -4 2 0 2 4
locity is Vo=Aw/ . 04r ; T ; T ; T
With this assumptionQ can be computed explicitly for a 0.3
given wave form of the oscillating wall. Equati@8) implies foz2l
that the heat flux is directly proportional to the local density
near the wall. This linear proportionality is not based on the 0'1_‘
assumption of low density, and it remains valid for dense . | . I !

systems as long as the vibration frequency is much larger 2

0
than the collision frequency. (m/T)HZ C
We first consider the sawtooth case, where the wall oscil-
lates between A and A, with a constant upward velocity
Vo=Aw/m, except for the instant when the wall bounces
back to the original positioisee Fig. 2. This case has been
studied in detail[5-7]. The velocity of the wall when par-
ticles collide with it is always/,. Then, the outgoing veloc-

ity of the particle iscy=2Vy—Cin. Then, P(Cyy, Cin) = 8(C . o . .
+¥:_ —2V0)p ourm=To (Couts Gn) = OlCout g~ 0.8. This value is in good agreement with the asymptotic
n -

prediction for high temperatureg=2/7~0.798[5,8], but
the interpolation expression given in R¢8&] gives only a

_ of T 2 T qualitative agreemerisee Fig. 4.
Q=mp(Vo) K/Zo + vag ' © Another oscillating wall that we consider is the one hav-

ing a biparabolic wave form. It consists in a sequence of

wherep is the number density near the wall. This result is theparabolas of alternating convexities that mimics the sinu-
same as the one obtained in Rdfs] and [6] for the dilute  soidal wave form. This wave form is practical in numerical
case, although here we have shown that this expression &mulations, since particle-wall collisions can be predicted
valid for all densities. It is different from the expressions for more accurately than in the sinusoidal case. @Hanction,
the energy influx presented in the appendix of Reéfin the  defined by Eq(10), can be also computed in this case.
cases of small and large temperatures. Figure 4 presents thg function for the sawtooth, sinu-

The case of a sinusoidal wal|,=A cogwt) is more rel-  spidal, and biparabolic cases. It is seen that the sawtooth
evant to experiments, but the computations cannot be dongave form produces an energy influx that is very different
analytically. However, the outgoing velocity distribution can
be easily computed numerically: particles are sorted out from 1 —
the incoming Maxwellian distribution and the phageis

FIG. 3. The velocity distribution by an oscillating wall. The
incoming distribution(negative velocitiesis a Maxwellian with
temperaturel. The outgoing distribution is computed using the al-
gorithm described in the text. The top plot correspondsTto
=0.1Im(Aw)? and the bottom plot is fol=2.0m(Aw)2.

The heat flux can be computed analytically,

—— —— ——

chosen from a uniform distribution. Then, collisions are P -
computed systematically until the particle emerges from the 03"/’, S
interaction region. This procedure ends up with the distribu- = i T T . RS i
tion f,, and can be easily implemented in the molecular =T a
dynamics(MD) of direct simulation Monte Carl¢gDSMC) 0.6r—.— I

simulations to mimic the high frequency limit. In Fig. 3, the &
distribution functions for two different incoming tempera-
tures are presented=0.1Im(Aw)? and T=2.0m(Aw)?. It is
seen that there are nonanalyticitiescat0. Also, there is a
plateau for positive velocities that is more pronounced for 2.
smaller temperatures. It is important to note that the outgoing
distributions are very different from a Maxwellian.

The heat flux can be obtained using E8). with the com- 91 — '1 """
puted distribution. The result can be expressed as

T
Q=mp(Aw)® \ m(Aw)2Q(T/m(A“’)2)’ (10 FIG. 4. A comparison ofj T/m(Aw)?] for the sinusoidal wave

form (continuous ling, the biparabolic wave forrtdashed ling the
where the functiom is presented in Fig. 4. Although it is not sawtooth wave forngdotted ling, and the interpolation expression
uniform it can be well approximated by the constant valuegiven in Ref.[8] (dashed-dotted line
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FIG. 5. The optimal value of the amplitud® as a function of X
the oscillating frequency» to get the same results as a reference
case done withA=1 and w=1. Dots are results from molecular
dynamics simulations. The continuous line corresponds to the th
oretical predictiorA=w™?

FIG. 6. The temperature profiles obtained in MD simulations for
different values ofw and with the best value dk. The continuous
qines, form the upper to the lower, correspondaie 1000 andA
=1.007x 1073, »=100, andA=1.008< 102, »=1 andA=1, o

=0.5 andA=2.009. The dotted line corresponds ¢x=0.1 andA
from the other two cases, both in the numerical values and iag gg.

the temperature dependence. The biparabolic wave form
gives values that approximates qualitatively well the sinu+,4t the macroscopic fields do not dependfoar o, but on

soidal case. the productAw in the high-vibration frequency limit.
Another simulation was done to check the expression for
IV. MOLECULAR DYNAMICS SIMULATIONS the heat flux. The parameters of the simulation are chosen
such that the system develops a spatial instabji8ty1-13
To check the validity of our results, we have done MD that reaches a steady state with the presence of convective
simulations of a granular system. We have considered theolls and density modulations.
inelastic hard sphere model in two dimensions, where grains Figure 7 presents the density field in a simulation done
are disks of diametesr and massn, and the energy dissi- with the following parameterso=1, m=1, N=5000, L,
pated at collisions is modeled with a constant restitution co=632.5, L,=79.0, g=0.00632, «=0.92, A=0.01, and
efficienta<1. The system is composed Nfgrains placed in  =100. The density presents important inhomogeneities in the
a rectangular box of sizé,XL,. There is a gravitational x andy directions. Besides, there is an important velocity
field g pointing downward. The system is periodic in tke field. Figure 8 presents the density, temperature, and heat
direction, the top wall is elastic, while the bottom one oscil-flux by the oscillating wall, as a function of computed in
lates for computational simplicity with a biparabolic wave the MD simulations. All these fields are strongly inhomoge-
form, with frequencyw and amplitudeA. Units are chosen neous and, in particular, it is clearly seen that the temperature
such thato=1 andm=1. at the vibrating wall is not uniform. Therefore, it is incorrect
The first series of simulations was done with a set paramto assume that the vibrating wall imposes a fixed tempera-
eters such that the system achieves a static stationary statere.
homogeneous in thedirection and with vertical density and
temperature profiles. This series was done with 5000, 0.25
L,=100, L, =500, «=0.998, andg=0.0002. A reference p
simulation was done witw=1.0 andA=1.0, and other simu-
lations were done at different frequencies. For each different  0.15
frequency, an automatic algorithm looks for the best value of
A such that, for the upper half of the simulating box, the
temperature profiles were as similar as possible to the refer  0.05
ence simulation. The result is a curde=A(w) that is pre-
sented in Fig. 5 and, except far<0.1, the obtained values
agree perfectly with the predictioh~ w™%. That the value of
the mean collision frequency close to the wallis0.21
explains why the theoretical predictions are valid only for
values larger than this one.

Also, in Fig. 6, the temperature profiles are presented for FIG. 7. The density field in the final stationary state of a simu-
some simulations. It is seen that the macroscopic fields anation where the parameters are chosen such that the system devel-
indistinguishable when the vibration frequency is higher tharops a spatial instability. There is a vibrating wall and a gravitational
the collision frequency and wheg/ Aw?<1. This confirms field pointing toward the vibrating wall.
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FIG. 8. Density(top), temperaturg¢middle), and heat fluxbot-
tom) profiles by the wall in the stationary regime. The solid lines
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grain collision frequency and the wall acceleration is much
greater than gravity, a finite limiting case is obtained if the
amplitude scales a8~ w™. If two experiments were per-
formed with different oscillation frequencies and amplitudes
such that the value dAw is preserved, they would produce
the same macroscopic flows.

Also, in this limiting case, it is shown that for the purpose
of calculations, the time-dependent kinetic boundary condi-
tion can be replaced by a stochastic stationary boundary. If
the incoming velocity distribution is close to a Maxwellian,
this stationary boundary injects heat, where the value of the
injected heat is proportional to the local density at the wall
and it depends on the local temperature at the wall, and on
the wave form of the oscillating wall. The strict linear de-
pendence with density is valid even for dense cases, where
nonideal effects can be present. Also the value of the energy
influx is independent on any external field or on the restitu-
tion coefficient between particles. Explicit analytic and nu-
merical expressions were found for the sawtooth and sinu-
soidal walls, respectively. The heat flux produced by the

are the computed values in the MD simulations, and the dashedinusoidal and the sawtooth wave form are very different,
(dotted line is the heat flux computed with the theoretical expres-and the latter cannot be used as a model to estimate the

sion for a biparaboli¢sawtooth wave form[Eq. (10) or (9)], using
the density and temperature obtained in the simulations.

energy influx in a sinusoidal vibrating wall. However, the
biparabolic wave form correctly describésith an error of
12%) the heat flux produced by the sinusoidal wave form.

Also, it presents the computed valued of the heat fluxThe comparison of the predictions with MD simulations is

using Eq.(10) with the g function for a biparabolic wave

excellent in verifying the scaling and the expression for the

form, taking the local values of density and temperature fromheat flux. In the simulation it is verified that replacing the

the simulations. The comparison between the heat flux oby
tained in the simulation and the predicted value is excellent

There is a systematic disagreemétite predicted value is
slightly smaller that the MD valye probably due to the fact
that the incoming distribution is not exactly Maxwellian. The
heat flux computed using thg function for the sawtooth

wave form disagrees completely with the values from the

simulation.

V. CONCLUSION

vibrating wall by a thermal wall is a poor approximation,
specially when there are spatial inhomogeneities, while the
replacement by a heat flux source gives excellent results.
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