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Dense granular media, fluidized by a vibrating wall, is studied in the high-vibrating frequency limit, where
the plate vibration frequency is much greater than the collision frequency, and the plate acceleration is much
greater than gravity. Using kinetic theory, it is shown that, regardless of the fluid density, external field, or
restitution coefficient between particles, there is an asymptotic scaling for saying that ifAv is kept constant,
then different amplitudesA (with the corresponding frequenciesv) produce the same macroscopic result.
Furthermore, it is found that in the limit of high frequencies, the boundary condition associated with the
vibrating wall can be replaced by a stationary heat source. The value of the heat flux depends linearly with
density even for dense fluids. Numerical comparisons with molecular dynamics simulations confirm these
predictions and show that the substitution of the vibrating wall by a thermal one gives poor results, while the
substitution by a heat source is very accurate.
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I. INTRODUCTION

Granular matter is usually kept fluidized by means of vi-
brating walls. Commonly hydrodynamic or kinetic theory
approaches are used to describe the bulk of the granular fluid
(see, for example, Ref.[1]). However, a detailed consider-
ation of the boundary condition is difficult because of its
explicit time dependence. In the case of high frequency and
small amplitude vibrations, successive collisions of the
grains with the wall are uncorrelated. For this reason, in this
limiting case, the wall has been usually modeled as a sto-
chastic border. It has been argued that the wall can be re-
placed by a thermal wall at a fixed granular temperature, that
scales asTwall,msAvd2, wherem is the particle mass, andA
and v are the oscillation amplitude and frequency, respec-
tively [2]. Also, kinetic approaches have been used to char-
acterize the vibrating boundary condition in more detail[3],
and instead of using a thermal wall, it has been shown that
for some types of vibrating walls(sawtooth or triangular
waveform) in the dilute case, it imposes a permanent energy
influx [5–9].

In this article, we consider the high frequency case, where
kinetic equations must be used to describe the layer near the
wall. It is shown that, for any waveform of the oscillating
wall, in the limiting casev→`, A→0, such thatAv is kept
constant, the wall can be effectively replaced by a static wall
that imposes a permanent energy influx. The value of the
energy influx is linearly proportional to density even for non-
ideal situations. It also depends on the waveform of the wall,
but it is independent of any external field or if the kinetic
equation needed to describe the granular dynamics is the
Boltzmann, Enskog, or even Liouville equations.

We give an expression for the energy influx for a general
wave form. In the case of the sawtooth wave form, we re-
cover the expression given in Refs.[5] and [6], and for the
sinusoidal and biparabolic wave forms, we give numerical
values for the energy influx. This result must be contrasted

with a previous article, where we have considered the case of
moderately high frequencies, when a global hydrodynamic
description can be applied[10]. In that case, the expression
for the energy influx was different, as well as was the way
the limit of high frequencies must be taken.

II. KINETIC THEORY DESCRIPTION

Let us consider a granular system fluidized by a wall that
oscillates vertically with a frequencyv and maximum am-
plitudeA. We consider the general case of any wave form as
represented in Fig. 1. The grains that collide with it, are
reflected elastically, emerging with a normal velocityc8
=2Vw−c, wherec is the precollisional normal velocity and
Vw is the instantaneous velocity of the wall. The tangential
velocity is preserved in the collision. The results presented in
this article are valid for all dimensions, but the relevant dy-
namics only take place in the direction perpendicular to the
wall.

In the limit of high oscillation frequencies(higher than
the mean collision frequency between grains), no hydrody-
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FIG. 1. The generic wave form of the oscillating wall with pe-
riod t=2p /v and maximum amplitudeA. There is an interaction
region (bounded by the two dashed lines). A free particle that col-
lides with the wall enters into the interaction region at a phasef
with velocity cin and, after a number of collisions, the particle
emerges with a velocitycout.
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namic theory can be used close to the wall. Indeed, there is a
Knudsen layer where only a kinetic approach can be used.
We will assume that a Boltzmann-Enskog equation can be
used to describe the motion of the system close to the wall.
We write the equation for the distribution functionfsrW ,cW ,td in
the compact form

]f

]t
+ cW ·

]f

]rW
+ gW ·

]f

]cW
= Jsf, fd, s1d

wheregW is the external force per unit mass(typically gravity)
and J is the collision term. A detailed boundary condition
must be supplied to describe the interaction with the oscil-
lating wall.

The system motion is described by two time and length
scales. There is the fast and small scale, where the motion is
determined by the wall oscillation, and there is a long and
slow scale, that describes the macroscopic motion. We
change variables to describe the fast scale in full detail:

t8 = vt, z8 = A−1z, c8 = sAvd−1c. s2d

Rewriting the Enskog-Boltzmann equation in these new
variables, we obtain

]

]t
f + cW ·

]

]rW
f + sAvd−1v−1gW ·

]

]cW
f = sAvdv−1Jsf, fd, s3d

where we have suppressed the primes.
Equation(3) can be highly simplified at high frequencies.

If g/Av2!1, the term proportional to the gravity accelera-
tion becomes negligible. Analogously, the right-hand side is
proportional to the mean collision frequencyn; then if n /v
!1, this term can also be neglected. Therefore, in the high-
frequency limit, provided the two previous conditions are
fulfilled, we can take the first order inv−1 of the above
equation

]

]t
f + cW ·

]

]rW
f = 0. s4d

The last equation represents the motion of a free gas, with
no collisions and without an external force. That is, in the
time and length scale of the wall oscillations, grains do not
collide and they do not feel the external force. This result has
been obtained independently of the density of the fluid as
long as the vibration frequency is much larger than the col-
lision frequency. A pathological situation can be obtained if
the system is close to packing near the boundary, because in
this case, the collision frequency diverges, making it impos-
sible to take the limit. However, if this were the case, a
kinetic theory description also becomes meaningless. Note,
however, that in order to arrive to Eq.(4), it is not necessary
to assume the Boltzmann-Enskog equation. In fact, the
Bogoliubov-Born-Green-Kinkwood-Yvon(BBGKY) equa-
tion (derived without approximations from Liouville’s equa-
tion) for the one-particle distribution has a right-hand side
that is also proportional to the collision frequencyn (see, for
example, Ref.[4]). Therefore, ifn /v!1, Liouville’s equa-
tion also leads to Eq.(4) by the same limiting process.

Therefore, the distribution function near the wall can be
determined by means of the study of a free particle in the
presence of an oscillating wall. As the external field vanishes
in the limiting case, the motion of the free particle is as
follows: the particle enters into the interaction region with a
velocity cin,0, and after a number of collisions with the
wall, it emerges with a velocitycout.0, and never again
collides with the wall(see Fig. 1).

The outgoing velocitycout is determined in terms of the
incoming velocitycin, and the phasef at which the particle
entered into the interaction region:cout=Rscin ,fd. The func-
tion R has been determined analytically in the case of saw-
tooth and triangular wave forms[2], but the general case
needs the use of numerical calculations. We recall thatR
does not depend on gravity or the nature of collisions.

At the macroscopic scale, the fast oscillations are de-
scribed in an stochastic way, where the phasef is uniformly
distributed over the intervalf0,2pd. Then, given an incom-
ing velocity, there is a distribution of outgoing velocities

Pscout;cind =
1

2p
E

0

2p

df d„cout − Rscin;fd…. s5d

This probability distribution depends only on the typical
velocity of the oscillating wall. That is, it only depends on
the productAv. Then,

Pscout,cind =
1

2pAv
E

0

2p

df dFcout

Av
− RS cin

Av
,fDG . s6d

If the particles that arrive to the wall have a known ve-
locity distribution f in, the outgoing velocity distributionfout
is given by

foutscoutd =E
−`

0

dcU c

cout
UPscout,cdf inscd. s7d

To keep a finite distribution function(such that the differ-
ent averages are finite), the limit of high frequency must be
taken such thatAv remains finite. Note that this is in contrast
with the case where hydrodynamic equations can be used up
to the wall, where it is required thatAv5/4 remains finite
[10].

III. HEAT FLUX

The energy(heat) flux that is injected into the system can
be computed as

Q =
m

2
E

−`

0

dc c3f inscd +
m

2
E

0

`

dc c3foutscd. s8d

This expression needs the knowledge of the incoming dis-
tribution function f in. This is a complex problem that needs
to solve the Boltzmann-Enskog equation in the Knudsen
layer, with an asymptotic boundary condition far from the
wall given by the hydrodynamic fields(see, for example,
Ref. [4]). For simplicity, and to obtain quantitative predic-
tions, we will assume that the incoming distribution is Max-
wellian with local values of the density and temperature.
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With this assumption,Q can be computed explicitly for a
given wave form of the oscillating wall. Equation(8) implies
that the heat flux is directly proportional to the local density
near the wall. This linear proportionality is not based on the
assumption of low density, and it remains valid for dense
systems as long as the vibration frequency is much larger
than the collision frequency.

We first consider the sawtooth case, where the wall oscil-
lates between −A and A, with a constant upward velocity
V0=Av /p, except for the instant when the wall bounces
back to the original position(see Fig. 2). This case has been
studied in detail[5–7]. The velocity of the wall when par-
ticles collide with it is alwaysV0. Then, the outgoing veloc-
ity of the particle iscout=2V0−cin. Then,Pscout,cind=dscout

+cin−2V0d.
The heat flux can be computed analytically,

Q = mrsV0d3S T

mV0
2 +Î 2

p

T

mV0
2D , s9d

wherer is the number density near the wall. This result is the
same as the one obtained in Refs.[5] and [6] for the dilute
case, although here we have shown that this expression is
valid for all densities. It is different from the expressions for
the energy influx presented in the appendix of Ref.[7] in the
cases of small and large temperatures.

The case of a sinusoidal wallyw=A cossvtd is more rel-
evant to experiments, but the computations cannot be done
analytically. However, the outgoing velocity distribution can
be easily computed numerically: particles are sorted out from
the incoming Maxwellian distribution and the phasef is
chosen from a uniform distribution. Then, collisions are
computed systematically until the particle emerges from the
interaction region. This procedure ends up with the distribu-
tion fout and can be easily implemented in the molecular
dynamics(MD) of direct simulation Monte Carlo(DSMC)
simulations to mimic the high frequency limit. In Fig. 3, the
distribution functions for two different incoming tempera-
tures are presented:T=0.1msAvd2 and T=2.0msAvd2. It is
seen that there are nonanalyticities atc=0. Also, there is a
plateau for positive velocities that is more pronounced for
smaller temperatures. It is important to note that the outgoing
distributions are very different from a Maxwellian.

The heat flux can be obtained using Eq.(8) with the com-
puted distribution. The result can be expressed as

Q = mrsAvd3Î T

msAvd2qsT/msAvd2d , s10d

where the functionq is presented in Fig. 4. Although it is not
uniform it can be well approximated by the constant value

q<0.8. This value is in good agreement with the asymptotic
prediction for high temperaturesq=Î2/p<0.798 [5,8], but
the interpolation expression given in Ref.[8] gives only a
qualitative agreement(see Fig. 4).

Another oscillating wall that we consider is the one hav-
ing a biparabolic wave form. It consists in a sequence of
parabolas of alternating convexities that mimics the sinu-
soidal wave form. This wave form is practical in numerical
simulations, since particle-wall collisions can be predicted
more accurately than in the sinusoidal case. Theq function,
defined by Eq.(10), can be also computed in this case.

Figure 4 presents theq function for the sawtooth, sinu-
soidal, and biparabolic cases. It is seen that the sawtooth
wave form produces an energy influx that is very different

FIG. 2. The motion of the wall in the sawtooth case. The am-
plitude is A, and the period ist=2p /v. The constant upward ve-
locity is V0=Av /p.

FIG. 3. The velocity distribution by an oscillating wall. The
incoming distribution(negative velocities) is a Maxwellian with
temperatureT. The outgoing distribution is computed using the al-
gorithm described in the text. The top plot corresponds toT
=0.1msAvd2 and the bottom plot is forT=2.0msAvd2.

FIG. 4. A comparison ofqfT/msAvd2g for the sinusoidal wave
form (continuous line), the biparabolic wave form(dashed line), the
sawtooth wave form(dotted line), and the interpolation expression
given in Ref.[8] (dashed-dotted line).
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from the other two cases, both in the numerical values and in
the temperature dependence. The biparabolic wave form
gives values that approximates qualitatively well the sinu-
soidal case.

IV. MOLECULAR DYNAMICS SIMULATIONS

To check the validity of our results, we have done MD
simulations of a granular system. We have considered the
inelastic hard sphere model in two dimensions, where grains
are disks of diameters and massm, and the energy dissi-
pated at collisions is modeled with a constant restitution co-
efficienta,1. The system is composed ofN grains placed in
a rectangular box of sizeLx3Ly. There is a gravitational
field g pointing downward. The system is periodic in thex
direction, the top wall is elastic, while the bottom one oscil-
lates for computational simplicity with a biparabolic wave
form, with frequencyv and amplitudeA. Units are chosen
such thats=1 andm=1.

The first series of simulations was done with a set param-
eters such that the system achieves a static stationary state,
homogeneous in thex direction and with vertical density and
temperature profiles. This series was done withN=5000,
Lx=100, Ly=500, a=0.998, andg=0.0002. A reference
simulation was done withv=1.0 andA=1.0, and other simu-
lations were done at different frequencies. For each different
frequency, an automatic algorithm looks for the best value of
A such that, for the upper half of the simulating box, the
temperature profiles were as similar as possible to the refer-
ence simulation. The result is a curveA=Asvd that is pre-
sented in Fig. 5 and, except forv,0.1, the obtained values
agree perfectly with the predictionA,v−1. That the value of
the mean collision frequency close to the wall isn=0.21
explains why the theoretical predictions are valid only for
values larger than this one.

Also, in Fig. 6, the temperature profiles are presented for
some simulations. It is seen that the macroscopic fields are
indistinguishable when the vibration frequency is higher than
the collision frequency and wheng/Av2!1. This confirms

that the macroscopic fields do not depend onA or v, but on
the productAv in the high-vibration frequency limit.

Another simulation was done to check the expression for
the heat flux. The parameters of the simulation are chosen
such that the system develops a spatial instability[8,11–13]
that reaches a steady state with the presence of convective
rolls and density modulations.

Figure 7 presents the density field in a simulation done
with the following parameters:s=1, m=1, N=5000, Lx
=632.5, Ly=79.0, g=0.00632, a=0.92, A=0.01, and v
=100. The density presents important inhomogeneities in the
x and y directions. Besides, there is an important velocity
field. Figure 8 presents the density, temperature, and heat
flux by the oscillating wall, as a function ofx, computed in
the MD simulations. All these fields are strongly inhomoge-
neous and, in particular, it is clearly seen that the temperature
at the vibrating wall is not uniform. Therefore, it is incorrect
to assume that the vibrating wall imposes a fixed tempera-
ture.

FIG. 5. The optimal value of the amplitudeA as a function of
the oscillating frequencyv to get the same results as a reference
case done withA=1 and v=1. Dots are results from molecular
dynamics simulations. The continuous line corresponds to the the-
oretical predictionA=v−1.

FIG. 6. The temperature profiles obtained in MD simulations for
different values ofv and with the best value ofA. The continuous
lines, form the upper to the lower, correspond tov=1000 andA
=1.007310−3, v=100, andA=1.008310−2, v=1 and A=1, v
=0.5 andA=2.009. The dotted line corresponds tov=0.1 andA
=9.98.

FIG. 7. The density field in the final stationary state of a simu-
lation where the parameters are chosen such that the system devel-
ops a spatial instability. There is a vibrating wall and a gravitational
field pointing toward the vibrating wall.
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Also, it presents the computed valued of the heat flux
using Eq.(10) with the q function for a biparabolic wave
form, taking the local values of density and temperature from
the simulations. The comparison between the heat flux ob-
tained in the simulation and the predicted value is excellent.
There is a systematic disagreement(the predicted value is
slightly smaller that the MD value), probably due to the fact
that the incoming distribution is not exactly Maxwellian. The
heat flux computed using theq function for the sawtooth
wave form disagrees completely with the values from the
simulation.

V. CONCLUSION

We have studied a granular system when it is fluidized by
a vibrating wall. If the vibration frequency is larger than the

grain collision frequency and the wall acceleration is much
greater than gravity, a finite limiting case is obtained if the
amplitude scales asA,v−1. If two experiments were per-
formed with different oscillation frequencies and amplitudes
such that the value ofAv is preserved, they would produce
the same macroscopic flows.

Also, in this limiting case, it is shown that for the purpose
of calculations, the time-dependent kinetic boundary condi-
tion can be replaced by a stochastic stationary boundary. If
the incoming velocity distribution is close to a Maxwellian,
this stationary boundary injects heat, where the value of the
injected heat is proportional to the local density at the wall
and it depends on the local temperature at the wall, and on
the wave form of the oscillating wall. The strict linear de-
pendence with density is valid even for dense cases, where
nonideal effects can be present. Also the value of the energy
influx is independent on any external field or on the restitu-
tion coefficient between particles. Explicit analytic and nu-
merical expressions were found for the sawtooth and sinu-
soidal walls, respectively. The heat flux produced by the
sinusoidal and the sawtooth wave form are very different,
and the latter cannot be used as a model to estimate the
energy influx in a sinusoidal vibrating wall. However, the
biparabolic wave form correctly describes(with an error of
12%) the heat flux produced by the sinusoidal wave form.
The comparison of the predictions with MD simulations is
excellent in verifying the scaling and the expression for the
heat flux. In the simulation it is verified that replacing the
vibrating wall by a thermal wall is a poor approximation,
especially when there are spatial inhomogeneities, while the
replacement by a heat flux source gives excellent results.
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FIG. 8. Density(top), temperature(middle), and heat flux(bot-
tom) profiles by the wall in the stationary regime. The solid lines
are the computed values in the MD simulations, and the dashed
(dotted) line is the heat flux computed with the theoretical expres-
sion for a biparabolic(sawtooth) wave form[Eq. (10) or (9)], using
the density and temperature obtained in the simulations.
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